'클론(Clone)'은 영어 '클론(clone)'을 음역한 것으로 생물학 분야에서 세 가지 차원의 의미를 갖는다.
1. 분자 수준에서 클로닝은 일반적으로 DNA 클로닝(분자 클로닝이라고도 함)을 의미합니다. 이는 특정 DNA 단편이 재조합 DNA 기술을 통해 벡터(예: 플라스미드, 바이러스 등)에 삽입된 다음 숙주 세포에서 자체적으로 복제되어 DNA 단편의 동일한 "집단"을 많이 얻는 것을 의미합니다.
2. 세포 수준에서 클론은 본질적으로 단일 조상 세포의 분열로 형성된 세포 집단입니다. 각 세포는 유전적으로 동일합니다. 예를 들어, 체외 배양 배지에서 세포를 여러 세대에 걸쳐 나누어 형성된 동일한 유전적 배경을 가진 세포군을 세포 클론이라고 합니다. 또 다른 예로 척추동물에서는 이물질(박테리아나 바이러스 등)이 침입하면 면역반응을 통해 특정 인식 항체가 생성된다. 특정 항체를 생산하는 모든 형질세포는 하나의 B세포에서 분리되며, 이러한 형질세포 집단도 세포 클론이다. 세포 복제는 낮은 수준의 생식 방법입니다. 무성 생식, 즉 성적 결합이 없으면 자손은 부모와 동일한 유전학을 갖습니다. 생물학적 진화 수준이 낮을수록 이러한 번식 방법을 채택할 가능성이 높아집니다.
3. 개인 수준에서 클론은 동일한 유전자형을 가진 두 명 이상의 개체 집단을 의미합니다. 예를 들어, 두 개의 일란성 쌍둥이는 하나의 클론입니다! 그들은 동일한 난자 세포에서 나왔기 때문에 정확히 동일한 유전적 배경을 가지고 있습니다. 이 정의에 따르면 "Dolly"는 복제품이라고 할 수 없습니다! 왜냐하면 '돌리'는 외로운 존재일 뿐이니까요. 영국 발생학자들이 두 개 이상의 동일한 세포핵을 두 개 이상의 동일한 핵이 제거된 난자 세포에 이식하고 정확히 동일한 유전적 배경을 가진 두 개 이상의 "돌리"를 얻을 수 있는 경우에만 복제라는 단어를 사용하여 이를 설명할 수 있습니다. 그래서 1997년 2월 Nature에 발표된 선정적인 논문에서 저자는 "Dolly"를 복제품으로 묘사하지 않았습니다.
또한 클로닝은 동사로도 쓰일 수 있는데, 위에서 언급한 DNA나 세포, 개별 집단을 얻는 과정을 뜻한다.
2. 복제 기술
1. DNA 클로닝
DNA 클로닝에는 다양한 방법이 있습니다. 기본적인 과정은 아래 그림과 같습니다(축척되지 않음).
이렇게 해서 얻은 DNA를 볼 수 있습니다. 생물학 연구에 사용될 수 있습니다. 특정 DNA 염기서열의 분석 및 처리뿐만 아니라 생명공학 산업에서 귀중한 단백질의 대량 생산도 포함됩니다.
2. 생물학적 개체의 복제
(1) 식물 개체의 복제
1950년대 식물학자들은 분화된 식물 세포에서 유전 물질이 손실되었는지 연구하기 위해 당근을 모델 재료로 사용했다는 문제가 있었습니다. 그들은 하나의 고도로 분화된 당근 세포에서 완전한 식물이 발달할 수 있다는 사실에 놀랐습니다. 이로부터 그들은 식물 세포가 전능하다고 믿었습니다. 당근 한 개에 들어 있는 2개 이상의 체세포에서 발달한 당근 집단의 유전적 배경이 정확히 동일하므로 클론이다. 이런 식물 복제과정은 완전한 무성생식 과정이다!
(2) 개체별 동물의 복제
① '돌리'의 탄생
1997년 2월 지난 27일 영국 에딘버러 로슬린 연구소의 이안 윌모트 과학연구팀은 세계 최초의 복제양 '돌리'가 탄생했다고 발표해 즉시 전 세계에 센세이션을 일으켰다.
'돌리'의 탄생은 암양 세 마리와 관련이 있다. 한 마리는 임신 3개월 된 핀란드 도셋 암양이고, 나머지 두 마리는 스코틀랜드 검은얼굴 암양입니다. 핀란드 Dorset 암양은 완전한 유전 정보 세트, 즉 핵(기증자라고 함)을 제공했으며, Scottish Blackface 암양은 핵이 없는 난세포를 제공했고, 또 다른 Scottish Blackface 암양은 양 배아의 발달을 제공했습니다. - 자궁은 "돌리" 양의 "출생" 어미입니다.
전체 복제 과정을 간략하게 설명하면 다음과 같다.
핀란드의 도셋양(Dorset ewe) 양의 유선에서 유선 세포를 채취해 저농도 영양 배양 배지에 넣었더니 세포 분열이 점차 멈췄다. 이를 기증자 세포라고 하며, 스코틀랜드 검은얼굴양에 성선자극호르몬을 주사하여 배란을 유도한 후, 수정되지 않은 난세포를 빼내고 그 핵을 즉시 제거하여 핵이 없는 난세포를 남깁니다. 전기 펄스 방식을 사용하여 기증 세포와 수용 세포를 융합하고, 최종적으로 융합 세포를 형성합니다. 전기 펄스도 자연 수정 과정과 유사한 일련의 반응을 일으킬 수 있기 때문입니다. 세포는 또한 수정란처럼 행동할 수 있습니다. 세포는 배아 세포를 형성하기 위해 동일한 방식으로 분열하고 분화합니다. 배아 세포는 다른 스코틀랜드 검은얼굴양의 자궁으로 옮겨지고, 배아 세포는 더욱 분화되고 발달하여 최종적으로 형성됩니다. 양고기. 돌리 양은 도싯 암양과 똑같은 모습으로 태어납니다.
1년 후, 또 다른 과학자 그룹은 쥐의 난구세포(난모세포 주변을 둘러싸고 있는 고도로 분화된 세포)의 핵을 핵이 완전히 제거된 난모세포에 이식하여 20개 이상의 세포를 얻었다고 보고했습니다. 발달된 쥐. "돌리"가 한 마리뿐이고 복제양이라고 하기에는 부족하다면, 이 생쥐는 진정한 복제생쥐이다.
② 핵 이식을 통한 생쥐 복제의 기본 과정
본 실험에서는 융모막 성선 자극 호르몬을 여러 차례 연속 주사하여 암컷 생쥐에게 난소 세포를 유도하는 과정을 통해 난구 세포를 얻었다. 계란 생산량이 많은 상태. 난구 세포와 난모세포의 복합체는 암컷 쥐의 난관에서 수집되었습니다. 큐뮬러스 세포는 히알루론산 처리에 의해 분산되었다. 핵 기증자로 직경 10-12 미크론의 난구세포를 선택합니다. (이전 실험에서는 직경이 작거나 큰 난구세포의 핵을 사용하면 핵 이식을 받은 난모세포가 8세포로 발달하는 경우가 거의 없는 것으로 나타났습니다. 무대.) 선별된 큐뮬러스 세포를 특정 용액 환경에서 보관하고 3시간 이내에 핵을 이식하였다. (이와 달리, "돌리"를 얻을 때 핵 공여체로 사용한 유방 세포를 먼저 배양 배지에 3시간 동안 계대하였다. -6회) )
난모세포(일반적으로 감수분열 중기 II에 있음)는 위에서 설명한 것과 유사한 방법으로 다른 종의 암컷 쥐로부터 수집되었습니다. 직경 약 7 마이크론의 얇은 튜브를 조심스럽게 사용하여 현미경으로 난모세포의 핵을 제거하고 세포질은 제거하지 않도록 하십시오. 또한 큐뮬러스 세포의 핵을 조심스럽게 제거하고 세포질을 최대한 많이 제거합니다(제거된 핵을 유리관 안에서 여러 번 앞뒤로 움직여 소량의 세포질을 제거함). 핵을 제거한 후 5분 이내에 핵을 제거한 난모세포에 직접 주사합니다. 핵 이식을 거친 난모세포를 특수 용액에 1~6시간 동안 담근 후 2가 스트론튬 이온(Sr2+)과 시토스타틴 B를 첨가합니다. 전자는 난모세포를 활성화시키고, 후자는 극체 형성과 염색체 제거를 억제한다. 처리된 난모세포를 꺼내어 스트론튬과 시토스타틴 B가 함유되지 않은 특수용액에 담가 세포분열을 통해 배아를 형성합니다.
며칠 전 결찰된 수컷 쥐와 교미한 가임신 암컷 쥐의 나팔관이나 자궁에 다양한 단계(2세포 단계부터 배반포 단계까지)의 배아를 이식했습니다. 완전히 발달한 태아 마우스를 약 19일 후에 외과적으로 제거합니다.
현재 배아세포 핵이식을 통해 복제되는 동물로는 생쥐, 토끼, 염소, 양, 돼지, 소, 원숭이 등이 있다. 중국에서는 원숭이 외에도 다른 동물을 복제하고 있으며, 염소도 지속적인 핵 이식을 통해 복제할 수 있습니다. 이 기술은 배아 분할 기술을 뛰어넘어 더 많은 동물을 복제하게 됩니다. 왜냐하면 배아가 분열되는 횟수가 많을수록 각 부분의 세포 수가 적어지고 개인의 발달 능력도 떨어지기 때문입니다. 체세포 핵 이식을 통해 복제된 동물은 단 한 마리뿐인데, 바로 양 돌리입니다.
3. 복제기술의 복음
1. 복제 기술 및 유전자 육종
농업에서는 가뭄, 숙박, 해충 및 질병에 강한 고품질, 다수확 품종을 대량 재배하기 위해 '복제' 기술을 사용해 왔습니다. 곡물 생산량이 크게 증가했습니다. 이런 점에서 우리나라는 세계 선진국들 가운데 선두에 들어섰습니다.
2. 복제 기술과 멸종위기종 보호
복제 기술은 종, 특히 희귀종과 멸종위기종을 보호하는 데 유용하며 활용 가능성이 크다. 생물학적 관점에서 볼 때 이는 복제 기술의 가장 가치 있는 측면 중 하나이기도 합니다.
3. 복제 기술 및 의학
현대에는 의사가 인간의 거의 모든 장기와 조직에 이식 수술을 수행할 수 있습니다. 그러나 과학기술적으로 보면 장기이식 거부는 여전히 가장 골치 아픈 일이다. 거부 이유는 조직 불일치로 인해 조직 적합성이 좋지 않기 때문입니다. '복제인간'의 장기를 '원래 인간'에게 장기이식용으로 제공한다면, 두 사람의 유전자와 조직이 일치하기 때문에 거부반응의 걱정은 전혀 없을 것이다. 문제는 "인간 복제물"을 장기 기증자로 사용하는 것이 인도적인가 하는 것입니다. 합법적인가요? 재정적으로 의미가 있습니까?
복제 기술은 귀중한 유전자를 대량으로 복제하는 데에도 사용될 수 있습니다. 예를 들어 의학에서는 당뇨병을 치료하는 인슐린과 왜소증 환자의 키를 다시 자라게 하는 성장호르몬을 생산하는 '복제' 기술을 사용합니다. 그리고 다양한 바이러스 감염 등에 저항할 수 있는 스트렙토졸린도 있습니다.